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ABSTRACT

The use of inflatable structures has often been

proposed for aerospace and planetary applications.

The advantages of such structures include low launch

weight and easy assembly. This paper proposes the use

of inflatables for applications- requiring very large

frame structures intended for aerospace use.

In order to consider using an inflated truss the

structural behavior of the inflated frame must be

examined. The statics of inflated tubes as beams has

been discussed in the literature, but the dynamics of

these elements has not received much attention. In an

effort to evaluate the vibration characteristics of

the inflated beam a series of free vibration tests of

an inflated fabric cantilever were performed. Results

"of the tests are presented in this paper and models

for system behavior posed.

NOMENCLATURE

a n constant in natural frequency calculation

I inflated beam length (m)

p beam inflation pressure (Pa)

r radius of inflated beam (m)

t time Is)

x beam coordinate from beam tip (m)

y beam deflection (m)

E beam fabric modulus (N/m)

I inflated beam moment of inertia (m 3)

Kin kinetic energy (joules)

M applied bending moment (N-m)

N axial stress resultant (N/m)

Pot potential energy (joules)

V 1 volume of beam when undeflected (m 3}

V 2 volume of beam at maximum deflection (m 3}

beam mass per unit length (kg/m)

p radius of curvature (m)

O angular position (radians}

W angular frequency (radians/s)

INTRODUCTION

Interest in using inflatable structures in space

exists because their basic characteristics (Leonard,

1974) solve many engineering problems that the

istructural designer is faced with in space. Pneumatic

structures consist of no more than a few layers of

fabric and can be launched into space in their

uninflated state, so the launch penalty associated

with them is very low. Also, they can be

prefabricated, packed, and then deployed in space by

pressurization. There are questions, however, about

the safety and durability of inflated structures in

the space environment.

The initial apace-based application of inflated

structures, also called pneumatic structures, was

ECHO-I, launched in August of 1960. ECHO-I was a 30 m

diameter metallized mylar balloon that was used as a

passive telecommunications satellite. Similar

pneumatic structures were sent aloft as ECHO-2 in 1964

and PAGEOS-I in 1966.

Examples of more complex space-based inflated

structures that go a step beyond the simple spherical

balloons used in ECHO and PAGEOS were designed and

tested by the Goodyear Aerospace Corporation under

contract from NASA during the Apollo and Skylab

programs in the 1960's and 70's. These included the

Lunar Stay Time Extension Module (Tynan, 1965), MOBY

DICK (French, 1967), and the DO21 airlock (Manning and

Jurich, 1973).

Numerous proposals have also been made to use

more complex inflatables for large space structures

such as precision antenna reflectors (Girard et el.,

1982; Reibaldi, 1985; Authier _nd Hill, 1985;

Bernasconi and Helbaldi, 1986; Williams, 1988}, solar

concentrators (Mikulas and Hedgepeth, 1989; Grossman

and Williams, 1989), orbiting hangars (Ohkami et el.,

1986), and inflatable construction forms (Kaden and

Pense0 1988). It has also been suggested that

inflatable segments be used to replace the solid

portions of the space shuttle robot arm to reduce arm

inertia and minimize required storage space (McCarty,

1990).

In 1962 Free Otto's Tensile Structures was first

published, a work that was largely devoted to

outlining numerous past, present and future

applications of pneumatic structures. Otto presents

scores of intriguing ideas for novel applications of

pneumatic structures. Of particular interest to this

investigation are the concepts that use inflated

cylindrical beams as structural members. The choice

of the inflated cylinder as structural member is

natural: a piece of fabric sewn into a closed tube

will assume the shape of a cylinder when internally
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'pressurized. The ease of fabrication and ability to

span distances and carry loads make the inflated

cylinder the natural pneumatic analog to the elastic

beam. Reenforcing this analogy are Otto's conceptual

designs that include inflated cylindrical beams as

members in planar and space trusses.

Current strategies for open frame structures

intended for aerospace use include both deployable and

erectable structures. Deployable trusses are those

that are folded or packed and then remotely expanded

upon reaching orbit. Erectable trusses usa

standardized beam elements that connect into a node

fixture. The strength and reliability of the solid

members of these truss designs make them the practica_

choice for the truss component in current space

station designs. However, when future needs require

construction of extremely large truss structures,

perhaps with dimensions measured in kilometers rather

than meters, the amount of material to he lifted and

the extravehicular activity required for construction

of solid element trusses may become prohibitive. The

advantages of inflatables may outweigh their

shortcomings in these applications.

ANALYSZS OP THE ZNYLATED BEAM: STATZCS

If the inflatable truss structure concept is to

be successfully implemented structural models must be

developed to predict both their static and dynamic

behavior in the space environment." Structural

analysis of inflated circular-cylindrical beams has

been performed using a number of different strategies.

Linear shell analyses have been used to model the

buckling behavior and shear deflections[Leonard et

el., 1960; Topping, 1964; Bulson, 1973) of inflated

members. Stiffness of inflated cantilever beams has

also been modelled with nonlinlu_r methods {Douglas,

1969) and variational methods have been used with

shell models of inflated beams to determine beam

deflections under a variety of loads (Steeves, 1975).

Comer and Levy (1963) modelled the behavior of an

inflated cantilever beam in a manner similar to

conventional beam theory. The following deflection

analysis of the inflated beam closely follows the

method used by Comer and Levy with some modifications

to make the results more applicable to fabric

structures. These changes include the use of stress

resultants instead of stress and expressing fabric

modulus in terms of force per unit width. This was

done because fabric thickness can only be vaguely

correlated with load carrying ability.

i.I

Pigure I. Sketch of the inflated cantilever.

Figure 1 shows a sketch of an inflated

cantilever beam. An arbitrary loading of this beam

can be expressed as applied moments that are a

function of the beam coordinate x. A model of an

inflated structure must accommodate both slack and

taut regions in the fabric. In the taut regions, or

when the axial stress in a given cross-section of the

fabric of an inflated beam remains tensile around the "

complete circumference, the stress distribution

illustrated in Figure 2 is assumed.

N m

3
No

Figure 2. The stress distribution in the

fabric of the inflated beam in regions

where no wrinkling is present.

In these regions the value of the axial stress

resultant in the beam skin is defined as

N = N O (i ÷ COS@) e Nm (I -cose) (i)
2 2

In this expression _ is measured around the

circumference of the beam from the point where N = N O.

When the applied moment exceeds the value _r3p/2

the bending stress cancels the axial stress in the

fabric skin on the concave side of the beam and

wrinkling will begin in £hat region. The fabric

wrinkles because it is incapable of resisting

compressive loads. In these regions the stress

distribution illustrated in Figure 3 is assumed.

o

Figure 3. The stress distribution in the

fabric of the inflated beam in regions

where wrinkling occurs.

In these regions the stress resultant in the

axial direction is the fabric skin is

N = (coseQ - cone )Nm
1 +cose o

N=0

x>e>e o

eo>e >o

(2)

For the balance of moments about a transverse

axis through the center of the beam a distance x from

the tip

M(x) = -2 r2 cos0 de

0

(3)

When M > xr3p/2 equations 2 and 3 can be combined to

give
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2 M(x) (i ÷ cosSo) (4)

Nm = r 2 (2= - 280 + $in28o)

For a balance of axial forces on the endplate

p_r = 2 r d@ (51

0

Again considering the regions containing wrinkled

fabric, equations 2 and 5 can be combined to give

p_r (i ÷ cos@ o )

Nm = 2 ( (_ -%)cos@ O + sin80)

(6)

Equating the expressions for Nm in equations 4 and 6

yields

M(X) = (2E-2e 0 +sin2@ O)
s

pr 3 4 ( (E -@o)COS@o + sinSo)

(7)

Considering now the regions where no wrinkling

of the cross section occurs, substitution of equation

I into equation 3 gives

Nm - No = 2 M(x)/Er 2 (8)

Substituting equatioh 1 into equation 5 yields

Nm + N O = pr (9)

Combining equations 8 and 9 yields

Nm = (M(x)/_r 2) + (pr/2) (I0)

The curvature of a beam element that is part of

a wrinkled region is given by

1 (Nm/E)

p r (i +cose o)

(ii)

Substituting in the expression for Nm in equation 4

yields

1
m

P

2 M(x)

E r3 (2_ -28o+ sin 2eo)

(12)

The curvature of elements in the unwrinkled

regions is given by

1 (Nm- No) (13)

@ 2 Er

Substituting equation 8 into equation 13 yields

1 M(X)

p _E
(14)

Equations 12 and 14 can be combined and the

approximation I/@=d2y/dx 2 applied so that the entire

system of equations can be expressed in the following

forTa :

d2y M(x)

dx 2 E I (15)

I = r3 (K - @o ÷ (sin28o)/2) for M > Kpr3/2

I = E r3 for M < Kl_r3/2

For the regions of the beam that are wrinkled (M >

Er3p/2) equation 7 must be used to determine the angle

80 that corresponds with the applied moment. Beam

deflections can be obtained by numerically solving the

differential equation of bending, k

ANALT$IB OP TRI INFLATED BEAK, DTNAMICS

Dynamic modelling methods that have been applied

to inflated beams include spring-inertia models and

simple potential energy models (Main et al., 1991).

Accurate dynamic models of apace-based structures are

important because unexpected vibration problems have

been encountered in orbiting structures that have

compromised the sehsitivity of the instruments they

carry, and unexpected dynamic effects could also

compromise structural integrity.

In the previous section an analysis method for

the inflated cantilever was outlined that is analogous

to the shear-moment method of elastic beam analysis.

Expanding on this analogy, Leonard (1988} suggested

that elastic beam flexural modes be used to

approximate the lower natural frequencies of an

inflated beam. The expression -for the natural

frequency of the nth mode of vibration of a solid

elastic cantilever beam is

(on = an_(E I)/ (_ 14) (16)

The constant an equals 3.52 and 22.0 for the first and

second modes, respectively (Den Hartog, 1985).

Despite the similarities between the two

systems, there are important characteristics that

distinguish the inflated beam from the elastic beam.

In particular, the effects of the change in volume and

the associated change in pressure of the the enclosed

gas of the beam should be examined as th& physical

cause of a natural oscillation Of the inflated

cantilever.
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One method of determining the frequency of

vibration of a dynamic system is to consider the

balance between the kinetic and potential energies.

In the inflated beam the pressurization medium is

compressed and expands as the enclosed volume changes

during each cycle, thus changing the potential energy

of the system.

To determine the potential energy stored as the

volume of the beam changes during each cycle the

undeformed and deformed volumes of the beam must be

calculated. Consider the element of the inflated beam

sketched in Figure 4.

Figure 4. An element of an inflated beam.

The undeformed volume of this element is

dv1 = Er 2 dx (17)

The deformed volume of the beam can be approximated by

assuming the beam fabric to be inextensibls. The

length of the centerline is then related to the

element length as follows.

• dx - ds = r d8 (i8)
t

Multiplying through by the cross-sectional area of the

beam allows the volume difference between the

undeformed and deformed element to be determined.

dv1 - dv2 = =r3 de (19)

From the geometry of the deformed element we have

de=dxlp. Further incorporating this and the

approximation I/p= d2y/dx 2 into equation 19 yields

dv I.- dV 2 = Er3 _) dx (20)

Combining this result with equation 17 and integrating

yields expressions for both the undeformed and

deformed volumes of the beam.

V I = _r21

0

dx

(21)

Xf we assume the process of compression and

expansion of the gas in the beam to be quasi-static,

the potential energy stored in the gas during each

compression cycle is

Pot--plY1 inlv_--4l
(22)

The total kinetic energy of the inflated fabric

cantilever in free vibration is the sum of the kinetic

energies of each element dx.

dKin = _ (_Ldx) (y(8)2 (23)

_This expression assumes that each point on the beam

vibrates such that

y(x,t) = Yo(X) sine)t
(24)

The expression for the total kinetic energy of the
beam is therefore

0

(25)

Equating the expressions for the beam potential and

kinetic energies yields the following expression for

beam natural frequency.

-2 PlVI In_

O)2 = "i (26)

g 2dx

0

To solve this equation for a particular

vibration amplitude the uniform inertial load level

necessary for deflecting the beam the desired amount

must be determined. This is done by iteratively

solving equations 15 and 7 for a range of uniform

loads until the load that results in the desired tip

deflection is determined.. Once this load level is

determined and the numerical solution to the beam

deflection dlfferential equation has been obtained,

the results can be substltuted into equation 26 and

the frequency of vibration due to the expansion and

compression of the gas determined. Vibration

frequencies for a range of amplitudes can be obtained

by repeating this procedure over a range of load

levels.
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"EXPERIMENTAL

An inflated cylindrical cantilever beam was

constructed by combining an outer rip-stop nylon

restraint layer with an internal gastight vinyl

bladder. (See Figure 5) The resulting structure had

a length of 1.0605 m and was 0.0928 m in diameter.

The base of the cantilever was solidly mounted to a

large building column and a free vibration test was

performed. Slight beam curvature was noted due to

gravity resulting in a downward tip deflection of

approximately 2 cm. The beam vibration was initiated

by horizontally displacing the tip of the cantilever

approximately 5 cm and then releasing it. This

initial deflection was chosen with reference to the

results of the previous investigators to be well short

of the level that would cause beam buckling. A free

vibration spectrum was obtained by mounting a Bruel

and Kjear Model 4366 accelerometer on the tip of the

beam. All tests were performed with the beam

pressurized to 69 kPa (i0 PSl).

NUMERICAL AND EXPERIMENTAL RESULTS

The expression for beam natural frequency in

equation 16 was used to determine the lower natural

frequencies of the inflated beam. Tensile tests on

the beam restraint fabric demonstrated that it had a

modulus of approximately 30,000 _I/m. The masses of

the fabric restraint, vinyl bladder, and the enclosed

nitrogen gas combined to give a beam mass per unit

length of 0.092 kg/m. With these results the first

and second modes of vibration were calculated to be

4.60 and 28.76 Hz, respectively.

The frequency of vibration due to the projected

change in the volume of the beam was calculated from

equation 26. The beam curvatures and displacements

were calculated from equation 15 by assuming that the

beam is subject to a uniform load of a magnitude

necessary for a given tip deflection. Since the

displacements and curvatures of the beam are dependent

upon the magnitude of the applied uniform load, the

vlbration frequent 7 calculated from those parameters

is amplitude dependent. The differential equation

solver DASSL was used to find the curvatures end

displacements along the length of the beam for each

incremental load level. Solutions were generated for

a range of amplitudes up to the 5 cm maximum

amplitude.

The resulting amplitude vs. frequency plot and

the two lowest natural frequencies of the beam are

shown in Figure 6. The curves are tr%ancated at the 5

cm amplitude level to czrrespond with the initial tip

deflection of the beam during the free vibration

tests. The predicted frequency of vibration of 4.60

Hz is easily iden=ifiable in the experimental

spectrum. The second mode, at 28.76 Hz, is less

evident. The peal< from 40 to 57 Hz seems to

czrrespond well with the gas compresslon/expansion

model curve in the i _o 3 cm amplitude range.

SUMMARY

Comparison of the model results with the

experimentally obtained free vibration spectrum of the

infla=ed cantilever ind,=ate that accurate predictions

of the frequencies of vibration for the lower modes

can indeed be made using conventional beam flexural

modes. There does exist approximately a 16%

discrepancy between the calculated and measured

frequency of the firs: mode. Considering the

complexity of the sS'stem and the assumptions necessary

f=r development of the model it is the opinion of the

authors that this difference is not unreasonable.

The correspondence between the gas

compression/expansion model and the experimental data

is encouraging, but not yet conclusive as to whether

or not the corres_ondlng peak in the experimental

spectrum is due to this physical process. A

defini=ive answer t= this question might be obtained

by repeating the free vibration test and

simultaneously recording the pressure variations

inside the beam.
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Figure 5. Photo of inflated cantilever test assembly.
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Figure 6. Plot showing the calculated frequencies of vibration of the inflated

cantilever. The two spikes on the left are first and second modes of vibration according

to beam theory. The curve on the right shows the amplitude dependent vibration
frequencies of the beam from the gas compression/expansion model.
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Experimentally obtained free vibration spectrum of the inflated cantilever test

The initial tip amplitude of the beam was 5 cm.
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